For the purpose of this article, let's make the assumption that the multiple restaurants you oversee have, in some form or another, a POS system, an established holiday calendar, weather data, customer satisfaction surveys, kitchen timers, and a labor management system.
If you only have a few of these systems in place, that's okay. I just wanted to name the data source systems that could be leveraged for this reporting overview.
Before diving into the relationship that customer service has on tip percentage and how that may play a role in overall profitability, let's first ask a more macro-question: What restaurant locations have negative trending sales? It's important to always ask the larger "standing far away" question before digging into the rabbit hole of possible issues and solutions.
I think it would be wise to start identifying restaurants with negative trending sales during a long time frame. I'm thinking something like 6 months to a year of data should be analyzed to see if we can spot obvious trends.
We could drill down to locations that have both poor customer satisfaction reviews and tip percentages. Perhaps we can filter credit card transaction with guest counts of 4 or less. This would narrow our search and allow us to investigate our question under specified parameters.
It could help if we weed out checks that are under $10 or over $75. Focusing on the average amount spent would remove some complicated scenarios from our research.Perhaps a customer just stopped by for a drink. Or on the opposite spectrum, customers who come in and spend well above the average amount. Maybe they are celebrating something and are in a cheerful mood.
Customers tend to tip differently on Thanksgiving or Christmas. If we remove holidays, we may be able to focus on normal days with normal tipping scenarios.
Sometimes people can have bad days or celebrated days because of the weather. For example, if it hasn't snowed in years but your location receives a sizable amount, it could make some customers feel cheerful. Although this is great, it could show a spike in above average tipping because of the unexpected snowfall. If you have a packed house and it's pouring on people who are waiting outside, it could put several patrons in a bad mood, causing poor tip percentages. By filtering out days when it rained or snow, we could remove the weather from being a variable.
By this point we have narrowed down our restaurant data to show us possible relationships between customer satisfaction and tip percentage. Poor experiences usually deems poor tips. Besides finding out if we have employees who are constantly receiving poor tips, we would like to know if there are other variables at play. Below are some metrics you could dig deeper into.
There are some many different variables that can affect customer satisfaction and tip percentage. The more information you collect from your data source systems, the better your analysis will be. At the end of the day, make sure you focus on the unusual trends. If you find issues, suggest a reasonable solution.
Mirus can help track and investigate. It's what we do: solve complex issues using data from multiple restaurant locations. If you don't have Mirus, you should still make an attempt to collect different data sets and monitor the information.
Have you investigated this issue before? If so, what did you find?
Mirus is a multi-unit restaurant reporting software used by operations, finance, IT, and marketing.
Watch Mirus reporting demonstrations and client reviews on our YouTube Channel
If you enjoyed this blog, please share using the social buttons at the top of the page and make sure to leave your thoughts in the comment section below!